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This paper examines an often overlooked point in the theory of dispersion of passive 
contaminants in parallel flows - the behaviour of a cloud of solute which has been 
injected into the flow over a period of time. The problem is linear if the solute has 
neutral buoyancy and the diffusivity is independent of concentration, and so it can 
be treated by a Fourier transform in time. For such a Fourier-transform method to 
be successful, a non-standard eigenvalue problem has to be solved to  determine the 
concentration pattern, the speed a t  which it is convected downstream and its decay 
distance downstream. The eigenvalue problem is not self-adjoint, the eigenvalue 
enters it nonlinearly if longitudinal diffusion is included, and i t  involves both regular 
and singular perturbation aspects. The eigenvalue problem is examined generally 
and the conclusions of Chatwin ( 1 9 7 3 ~ )  are re-assessed. The eigenvalue problem is 
then solved numerically for three cases of interest. Two of these cases (dispersion from 
a harmonically varying source in Poiseuille and plane Couette flow) reveal most 
unusual eigenvalue structure, whilst the third (dispersion from a harmonically 
varying source in turbulent channel flow) is not exceptional. The effect of weak 
longitudinal diffusion is examined theoretically (for general applications) and 
numerically in one instance (the application to Poiseuille flow). Longitudinal 
diffusion, even if weak, has a marked effect on the eigenvalue structure. The paper 
concludes with a suggestion for an alternative attack on the original problem of 
dispersion from time-dependent sources. 

1. Introduction 
This paper considers the dispersion of a cloud of soluble matter which has been 

injected over a period of time into a steady parallel flow. This physical problem occurs 
in all dispersion experiments in parallel flows since i t  is experimentally impossible 
to inject solute into a flow in other than a time-varying manner. Of course, a t  
extremes, the injection of solute may be accomplished in very short intervals in an 
attempt to inject a &-function, or the injection may be maintained a t  a steady or 
almost steady rate. Inevitably, however, time-dependent injection will occur in 
experiments. 

The theory underlying the time-dependent injection problem has a relatively short 
history, being primarily developed from Taylor’s (1953) work on the dispersion of 
a finite cloud of solute. The problem was brought to the author’s attention by 
chemists who were interested in using a gas-flow reactor (Howard 1976) to measure 
diffusion coefficients between gaseous species a t  low pressures. I n  their experiments 
(Plumb, Ryan & Barton 1983), the injection of the contaminant gas (oxygen) into 
the carrier gas (helium) flowing at  about 10 m s-l took place in about 20 ms, and the 
time-dependent injection effects had a pronounced effect on the oxygen distribution 
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measured further down the reactor. Some other particular applications for the theory 
have been reported by Brinkman (1950, viscosity-measuring experiments), Carrier 
(1956, an inverse problem in concentration measurement), Philip (1963u, b,  micro- 
meteorology and possibly physiology and botany) and Soundalgekar & Gupta (1977, 
magnetohydrodynamics). The most important unifying reference on the subject is 
due to Chatwin ( 1 9 7 3 4  who investigated dispersion from harmonically time- 
dependent inputs. Chatwin consolidated the previous references, gave a more general 
description of the problem, obtained high- and low-frequency approximations for two 
simple parallel flows, and developed methods for determining the most important 
features - the speed at which the concentration pattern is transported downstream 
and its decay distance in the downstream direction. 

In  general, dispersion from a time-dependent input can be investigated in two 
ways: the first is by recognizing the problem to be linear and proceeding through a 
Fourier transform in time. This was the method used by Chatwin, and i t  leads to an 
unusual eigenvalue problem which proves to be richer in detail than his asymptotic 
expansions would suggest. The second method is by regarding the input strength as 
a distribution of &functions in time, and therefore convolving the input distribution 
function with the solutions for dispersion from a &function input. This approach is 
becoming more attractive as the problem of dispersion from a &function input 
becomes better understood (Gill & Sankarasubramanian 1970 ; Chatwin 1970 ; Smith 
1981). 

The present paper is mainly concerned with exploring the viability of the first 
approach. I n  $2 the problem is specified mathematically, and the unusual eigenvalue 
problem mentioned above is obtained. Chatwin’s (19734 results (based on Fourier 
decomposition in time) are summarized and particular and interesting features of the 
eigenvalue problem are identified for subsequent investigation. One of these features 
is that  the eigenvalue enters nonlinearly into the eigenvalue problem if longitudinal 
diffusion effects are included. The numerical methods required for the subsequent 
investigation are also described in $2. Then, in $93, 4 and 5, numerical details are 
presented for dispersion from time-dependent sources in three basic flows in which 
longitudinal diffusion is neglected. High- and low-frequency asymptotic solutions 
were obtained for the first two problems (Poiseuille and plane Couette flow) by 
Chatwin (19734, and the third set of results (for a model of turbulent channel flow) 
is believed to be new. The first two problems are found to have very unusual features 
associated with near-coalescence of eigenvalue branches. I n  996 and 7 effects of 
longitudinal diffusion are included and the eigenvalue problem in which h enters 
nonlinearly is studied. Weak longitudinal-diffusion effects are calculated theoretically 
for general basic flows, and detailed numerical results are then presented for Poiseuille 
flow. A final discussion section concludes the paper. To highlight the most important 
conclusions : the problem is amenable to two methods of attack and the smeared out 
&-function approach is recommended if asymptotic results a t  large time are required ; 
unusual results are found numerically for Poiseuille and plane Couette flow even when 
longitudinal diffusion is neglected ; and weak longitudinal diffusion changes the 
eigenvalues markedly. 

2. Representation of the solution, some general results and numerical 
techniques 

I n  this section the problem is mathematically specified, some results of Chatwin 
( 1 9 7 3 ~ )  are reviewed and extended, and the numerical techniques required for 
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subsequent applications are described. Suppose that a solute is injected over a period 
of time into the steady parallel flow (UV(  Y ,  2). 0 , O )  through a cross-section with 
typical dimension a. Here U is the discharge speed of the flow, and the problem is 
specified in dimensional Cartesian coordinates (x, a Y ,  az), where x is a distance in the 
direction of the flow. Throughout the presentation, an overbar will denote the 
cross-sectional mean, so that v =  1 by construction. It will be assumed that the 
diffusion coefficient of the solute in the solvent can be written DK( Y ,  Z),  where D 
is dimensional and K = 1. The dependence of K on Y, 2 allows for idealized problems 
where the diffusive fluxes are isotropic yet possibly varying in strength across the 
cross-section. Moreover the fluxes are independent of the concentration t! of solute. 
If the injected solute is neutrally buoyant and if V denotes the operator 
(0, a/a Y ,  a/aZ), the concentration C of solute is specified by the problem 

ac ac a2c D 
- + U V (  Y, 2)  - = DK( Y ,  2) - + - v* (K(  Y, 2)  VC), 
at ax ax2 a2 

ac 
K -  = 0 at  the boundary. 

an 

(2.1 a )  

(2.lb) 

For this linear problem, the concentration a t  the injection point x = 0 (say) can be 
represented by superposition of spectral components. Without loss of generality, 
therefore, the condition a t  x = 0 is taken to  be 

C(0, Y ,  2, t )  = g( Y ,  2) eiwt, ( 2 . l c )  

with 0 < w < co. The problem (2 . la ,b)  has separable solutions 

(2.2) 

in which h and @ are the eigenvalue and eigenfunction in the eigenvalue problem 

V*{K(Y,Z)V@} = iD{l-hV(Y,Z)- i ish2K(Y,Z)}@, ( 2 . 3 ~ )  

(2.3b) K- a@ = 0 a t  the boundary. 
an 

Here the dimensionless parameters 52 and E are defined by 

thus D is a frequency parameter and E is a measure of the importance of longitudinal 
diffusion. I n  many applications involving dispersion of matter in liquids, Chatwin 
(19734 points out that E is so small that  longitudinal diffusion can be neglected. (For 
example, a typical value for K for the diffusion of matter in liquids is K = lop9 m2 s-l. 
If the values w = 27c s-l and U = low2 m s-l are chosen as representative of laboratory 
experiments, E is then found to  be B = The effects of longitudinal diffusion can 
therefore be neglected in ( 2 . 3 ~ )  provided h is found to be O(l ) ,  which is, in fact, 
confirmed by subsequent computations.) I n  contrast, if the dispersion of gas species 
a t  low pressures is considered as by Plumb et al. (1983), then E is not small and 
longitudinal diffusion is important. (Typical values for the constants in the work of 
Plumb et al. were a = lop2 m, K = 0.02 m2 s-l, U = 10 m s-l and w = 2n/0.01 s-l. 
These typical values for the constants give D = 3 and E = 0.1 ; whilst other extreme 
values for the constants gave E values greater than 1 .  Clearly, longitudinal-diffusion 
effects cannot be neglected in such applications.) 
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The eigenvalue problem (2.3) is non-standard because i t  involves complex-valued 
coefficients and because the eigenvalue A enters quadratically if E is not zero. (The 
eigenvalue already enters linearly into the problem by virtue of the second term on 
the right-hand side of (2.3a).) The occurrence of complex coefficients means that 
problem (2.3) is not self-adjoint, even when E = 0, and so the usual eigenvalue theory 
(e.g. Boyce & Di Prima 1977) is no longer applicable. Thus, whilst (2.3) may possess 
eigenvalues, these would almost inevitably be complex-valued ; moreover it is possible 
that the corresponding set of eigenfunctions is not complete, that  multiple eigenvalues 
exist, and that ordering and asymptotic properties of the eigenvalues would not be 
guaranteed as in self-adjoint systems. The non-self-adjointness of the problem is even 
more pronounced when E 4= 0, and i t  appears that  few theoretical results have been 
established for problems as general and as complicated as (2.3). Two references should 
be noted in this context, however: Swanson (1978) has presented comparison 
theorems for problems such as (2.3), and Andrews (1974) has compiled a list of 300 
references to problems in which the eigenvalue enters nonlinearly. 

I n  the sequel, it  will be assumed that  V and K in (2.3) are such that the problem 
possesses a discrete set of (complex) eigenvalues (A,) with corresponding eigenfunctions 
{$,}. This allows some of Chatwin’s conclusions to  be re-examined when longitudinal 
diffusion is retained, i.e. E + 0. The first of these concerns orthogonality: standard 
manipulations on (2.3) give the result 

where the integration is over the cross-section of the flow. This result shows that 
orthogonality of the eigenfunctions is lost when E $: 0. If C is written as the 
superposition 

then the constants A,  are determined by fitting the injection condition (2.1 e), so that 
Z,A,(SZ, E )  $,( Y ,  2, SZ, E )  = g( Y ,  2). For this purpose, i t  is necessary to assume that 
the set of eigenfunctions {$,} is complete with respect to g( Y ,  2). The constants A ,  
are then determined by truncating and solving the infinite set of simultaneous 
equations 

(2.7) 

where the brackets denote an  appropriate integral. This procedure is straightforward 
when the eigenfunctions are orthogonal, that  is, when E = 0. 

Chatwin ( 1 9 7 3 ~ )  also deduced some elementary bounds for the eigenvalues and his 
treatment is now examined with E 4= 0. If complex conjugates are denoted by 
asterisks, (2.3 a )  gives for any particular eigenvalue 

V.(KV$) = iQ(1-Ah-ieA2K)$, 

v-  (KV$*) = - iQ( 1 -A* V +  isA*2K) $*, 
and hence 

V*(K@*V$)-KlV$12 = iQ(1 -Ah-iieA2K) 1$12, 

V. (K$V$*) - KJV$12 = - iQ( 1 -A* V +  isA*2K) l$12. 
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Integration of these equations over the cross-section and use of the boundary 
condition (2.3b) gives that 

j KJlkPdS 1 j KIV%VdS 

j ~11k12dX j Vl$-l"dS ' 

j ~l$l"dS j llkI2dS 

- --- ( 2 . 8 ~ )  
52 

A, + €(A& - A ? )  

- A, - ZEA,  A, - (2.8b) 

For E = 0 and K, V 2 0, Chatwin deduced the bounds 

- < A h , < c Q ,  A , < O ,  
Vmax 

1 

but there is no simple extension of these results when E is non-zero. 

An ordering principle for the eigenvalues 

It was implicitly assumed by Chatwin ( 1 9 7 3 ~ )  that an ordering principle of the form 

0 < -1m (A , (52 ,~) )  < -1m (h,(SZ,s)) < ... 

could be established for the eigenvalues, and that this ordering would hold for all 
values of SZ. (The fact that Im (A,) < 0 ensures that all modes are spatially decaying.) 
One of the important results of the present work is that such an ordering principle 
may break down in some applications whether or not longitudinal diffusion is 
considered. However, in the applications investigated in $93, 4,  5 and 7, the 
breakdown in ordering does not affect the dominant eigenmode characterized by A,. 
Thus the mode with the lowest absolute value of Im ( A ( 0 , O ) )  has the lowest absolute 
value of Im ( A )  a t  all values of 52, E .  

Dominant behaviour for large x and at high and low frequencies 

For large x the series (2.6) has the leading term 

C x A , e x p  iw t-- @ , ( Y , Z ) ,  {. ( ")I (2.10) 

where A, is the eigenvalue defined by the ordering principle above. The concentra- 
tion pattern is therefore convected at speed U/Re(A,) and decays in a longi- 
tudinal distance - U / w  Im (A,). At high frequencies Chatwin showed that 
Re (A,) was expected to be near 1/  V,,, with the concentration pattern confined to a 
region near where V =  V,,,. For low frequencies, Chatwin deduced the result 
A,(O) = 1 -iASZ+ O(sZ2), where A is a dimensionless number depending on the flow. 
In  this case, the concentration pattern is convected a t  the discharge speed U and is 
approximately constant across the cross-section of the flow. Chatwin's arguments for 
high and low frequencies remain applicable even with longitudinal diffusion included 
( E  8 0), although Re (A,) and Im (A,) change with E .  For instance, the effect of 
longitudinal diffusion on the constant A above is known for many applications by 
virtue of work by Aris (1956). 
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Numerical methods 

Finite-difference methods and shooting methods were used to calculate the eigenvalues 
presented in subsequent sections. Brief descriptions of these two methods are given 
for the eigenvalue problem 

du 
- = 0  a t  t = a , b ,  
dt 

(2.11 a )  

(2.11b)  

which is sufficiently general to  cover all the examples subsequently considered. (Some 
mild conditions are needed on p(t), q(t), r(t) and s(t) for subsequent error estimates 
to be applicable.) For the finite-difference method, the differential problem (2.1 1 )  is 
discretized on a uniform mesh 

to < t1 < t 2  < . . . < tN-1 < t, < tNf1 

with spacing H = ( b - a ) / ( N -  l ) ,  where the points to and tN+1 are fictitious points 
beyond the boundaries a t  t, = a and tN = b. If the central-difference approximat'ions 

du uj+, - ujpl 
dt 2H ' dt2 H2 

d2U - uj+, - 2 ~ j  + ujpl -- _ -  - 

are applied to (2.1 1 u), the system of equations 

uj-,[ - 2pj + Hpi J + uj[4pj + 2H2{qj - Arj - eA2sj}]  + uj+,[ - 2pj  - Hpj] = 0, (2.12 a)  

is obtained for j = 1 ,  ..., N .  The boundary conditions (2.11 b )  provide the extra 
conditions 

UO = u$, UN-1 = UN+1? (2 .126)  

and these equations ( 2 . 1 2 a , b )  form a set of N + %  simultaneous homogeneous 
equations in N +  2 unknowns. That is, 

where the matrix A is tridiagonal, and the condition for (2 .12)  to ha,ve a solution is 
that detA = 0. The discrete problem (2 .12)  yields N eigenvalues {hhN)}$=l.  For the 
case when E = 0, the difference en between ALN) and the nth eigenvalue A, of the 
differential problem (2 .11)  is known to satisfy (Paine & Anderssen 1980, equation 
( 3 . 2 ) )  

lenl = IA,-AkN)I < CH2Ai. (2 .13)  

(Here C is a constant independent of H and n, and this result does not apply for the 
case when E + 0 in (2.11, 2 .12) . )  The eigenfunction corresponding to AhN) may be 
determined by back-substitution after arbitrarily assigning a value to u at one of the 
endpoints. 

For the shooting method, the problem (2.1 1) is replaced by the following system 
of first-order differential equations : 

where 

(2.14u) 

(2.1.l-h) 
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The value of [u vIT a t  t = b was computed using the 4th-order RungeKutta  
technique, and the value of h was adjusted until v(b)  was zero to within a prescribed 
tolerance. If the Runge-Kutta solution is achieved in N steps, then the error between 
the eigenvalues of the discrete and continuous problems satisfies (Paine & Anderssen 
1980, equation (3.6)) 

[ en[  = Jh,-hkN)[ < CH4hi ,  Cconstant. (2.15) 

(This result applies for the case E = 0.) The shooting method also gives an immediate 
numerical approximation to the corresponding eigenfunction. 

Both numerical procedures were expedited using an efficient root-finding routine 
based on inverse quadratic interpolation. The computations were mainly performed 
on a P D P  11/34 minicomputer with selective checking on a CDC Cyber 76 computer. 
All the eigenvalues described in subsequent sections are considered to  be accurate 
to 3 significant figures; and some detailed comparisons of the numerical methods are 
presented in table 2. Further checks on the numerical methods were made by 
comparisons with the asymptotic results of Chatwin (1973a) and with some exact 
solutions which applied in other special cases. The computation of the eigenfunctions 
also confirmed that the boundary condition (2.11 b )  was satisfied a t  t = b. 

3. Results for Poiseuille flow, E = 0 

The first example considered is the dispersion of a solute with constant molecular 
diffusivity K injected as a function of time into laminar flow in a circular pipe of radius 
a. Here D becomes K and K = 1, and, if R is defined by R2 = y2+Z2, the velocity 
profile is V ( R )  = 2(1- R2). The eigenvalue problem (2.3) with longitudinal diffusion 
neglected ( E  = 0) becomes 

-_ " i52[l-2h(l-R2)]+ 
R d R k d  = 

under the boundary conditions 

- 0 a t  R = 0 (by symmetry) and R = 1 .  _ -  d$ 
dR 

(3 . la)  

(3.1 b )  

This problem has the solution (Philip 1963a) 

where 

(3.2b) 

the square roots have positive real parts and M is Kummer's confluent hypergeometric 
function. The boundary condition at R = 1 is satisfied if 

M ( - y ,  1,/3)+2yM(l--y,2,P) = 0, (3.3) 

and this transcendental equation defines the eigenvalues. 
Chatwin and the earlier authors he cites investigated the high- and low-frequency 

asymptotic expansions of the solution (3.2) satisfying (3.3), and his conclusions are 
summarized in table 1 .  For the present work, the eigenvalues were computed directly 
from the defining problem (3.1) by the two methods described in $2. The real and 
imaginary parts of the first 7 eigenvalues as a function of log,, (52) are displayed in 
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Eigenfunctions 

$,(R, a)  = 1 +@2( 1 - 6R2 + 3R4) 
$,(R, S Z )  x exp{ -+(iQ)iR} + O(Q2) 

x M( -p ,  1 ,  (isl)a R2)  
$.,(R, Q) not given for p 2 1 

rransport speed U/Re (A,) 

Decay distance - U/o Im (A,) 

U (discharge speed) 

48( U a 2 / ~ )  Q P 2  

2U (i.e. maximum speed) 

1/2 ( U U ’ / K )  

TABLE 1 .  Summary of Chatwin’s results concerning dispersion in Poiseuille flow in a circular pipe 
of radius a, discharge speed U, molecular diffusivity K ,  frequency parameter SZ = W U ~ / K ,  axial 
diffusion neglected 

figures 1 (a, b) .  There are several noteworthy features of the computed eigenvalues. 
The first feature (which is not shown on figures 1 a, b)  is that  there is good agreement 
between the computed eigenvalues and the high- and low-frequency expansions 
presented by Chatwin. Secondly, the eigenvalue branches A,(52) and A,@) nearly 
coalesce when 4 x 32.3. As 4 increases beyond this value, the A, branch reverts to 
an unexceptional pattern, whilst the A, branch has quite anomalous behaviour which 
the author was unable to  deduce from high-frequency expansions. Check calculations 
of this ‘near miss ’ were performed using both eigenvalue-finding techniques, very fine 
meshes and both computers mentioned earlier. The results of these check calculations 
near 52 = 32 are shown in figure 2, and comparisons of the numerical results for 
various meshes are shown in table 2. The eigenfunctions (normalized so that 
I,+J0,52) = 1 )  were also computed to check that the boundary conditions (3.16) 
were satisfied. Figure 3 shows the eigenfunction corresponding to A,(52) a t  
52 = 1 ,  10, 100, 1000; whilst figure 4 shows the eigenfunction corresponding to  &(a) 
a t  4 = 20,40, 60, 80. A comparison of figures 3 and 4 shows the anomalous 
behaviour of the A,(4) branch as 52 increases: for 52 large, the eigenfunction !P,(R, 52) 
has bigger amplitude near R = 1 than near R = 0 as expected. The eigenfunction 
corresponding to the anomalous branch is strongly damped in the direction of the 
flow, however, since Im(A,(Q)) is more negative than Im(Aj(52)) for the other 
branches (j’+ 2) for 4 large. 

4. Results for plane Couette flow, e = 0 

Couette flow with the velocity profile 
Suppose that a solute with constant molecular diffusivity K is injected into plane 

V ( Y ) = l + Y  ( - l < Y < l ) ,  (4.1) 
and the effects of longitudinal molecular diffusion are ignored (c = 0). The frequency 
parameter 4 becomes W ~ / K  and the eigenvalue problem (2.3) takes the form 

d2I,+ -= iQ[l-A-AY]I,+, 
d Y2 

(4.2a) 

= O  at Y = & l .  * 
d Y  

(4.2b) 
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I I 1 I 1 I 1 i 

0 1 2 3 4 
log,, i-2 

loglo 52 
FIGURE 1. The first seven eigenvalues as a function of log,,Sa for the example of $3:  (a)  real part 

of eigenvalues, ( b )  imaginary part of eigenvalues. 

The solution to this eigenvalue problem is (Chatwin 1973a, p. 665) 

+(Y,s;1) = MIAi( +M,Bi(  A Y + A - l  oL ), 
a 

where 
a = (-AZ/iQ)t. 

9 

(4 .3a)  

(4.3b) 

FLM 136 
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I I 1 

Central-difference method Shooting method 

Eigenvalue Q N 

4 31 50 
100 
200 
300 

32 50 
100 
200 
300 

33 50 
100 
200 
300 

A* 31 50 
100 
200 
300 

32 50 
100 
200 
300 

33 50 
100 
200 
300 

Re (4 
1.2088 
1.2125 
1.2133 
1.2134 

1.1695 
1.1780 
1.1797 
1.1799 

1.053 4 
1.0582 
1.0594 
1.059 7 

1.1207 
1.1200 
1.1199 
1.1200 

1.1607 
1.1553 
1.1541 
1.1542 

1.2772 
1.2755 
1.2750 
1.2750 

-1m ( A )  

0.85471 
0.85220 
0.851 51 
0.851 58 

0.921 78 
0.91679 
0.91541 
0.91538 

0.914 30 
0.91795 
0.91875 
0.91895 

1.1435 
1.1478 
1.1489 
1.1491 

1.0417 
1.0482 
1.0500 
1.050 1 

1.0178 
1.0156 
1.0150 
1.0151 

N Re ( A )  
25 1.2137 
50 1.2137 

100 1.2137 
200 1.2137 

25 1.1804 
50 1.1805 

100 1.1805 
200 1.1805 

25 1.0602 
50 1.0599 

100 1.0598 
200 1.059 8 

25 1.202 
50 1.1198 

100 1.1198 
200 1.1198 

25 1.1543 
50 1.1538 

100 1.1538 
200 1.1538 

25 1.2749 
50 1.274 9 

100 1.2749 
200 1.2749 

-Im(A) 

0.851 26 
0.851 35 
0.851 36 
0.851 36 

0.91481 
0.915 15 
0.915 17 
0.915 17 

0.91907 
0.91917 
0.919 18 
0.919 18 

1.1496 
1.1492 
1.1492 
1.1492 

1.0510 
1.0505 
1.0504 
1.0504 

1.015 1 
1.0148 
1.0147 
1.0147 

TABLE 2. Comparison of calculated values for A, and A, at Q = 31,32, 33. The calculations for both 
methods were performed on a PDP 11 /34 minicomputer 
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0 0.5 1 .o 
R 

FIGURE 3. The eigenfunction 8) for 8 = 1 ,  10, 100, 1000 normalized 
$1(0, 8) = 1 : -, real part; ----, imaginary part. 

so that 

10 

5 

0 

-5 

-101 I I 
0 0.5 1 .O 

FIGURE 4. The eigenfunction I , ~ ~ ( R ,  8) for 8 = 20, 40, 60, 80 normalized so that 
$.JO, 52) = 1 : -, real part; ----, imaginary part. 

R 

9-2 
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Here Ai, Bi are the Airy functions, and M I ,  M2 are non-zero constants. The boundary 
conditions (4.2 b )  give the condition 

which defines theeigenvalues. Chatwin wasagain able to make low- and high-frequency 
expansions of the solutions, and a summary of his conclusions is given in table 3. 

For the present work, the eigenvalues of (4.2) were computed directly and the real 
and imaginary parts of the first 7 eigenvalues as a function of log,, (a) are shown in 
figure 5(a,  b). These eigenvalues also have a ‘near miss’ €or Q near 10, and the A, 
branch has anomalous behaviour for larger values of 52. The eigenfunctions were also 
calculated to check that the boundary conditions were indeed satisfied on the 
anomalous branch. These calculations, whose results are not presented here, show 
large-amplitude solutions for @2( Y, Q) near Y = - 1 ,  particularly for Q greater than 
about 20. For large values of 52, all the other Yp( Y, S Z )  are confined in a region of 
thickness aQ-4 near Y = 1 in accordance with Chatwin’s conclusions. Again the 
anomalous branch is more strongly damped than the other branches for 52 large, and, 
again, there is fair to good agreement between the numerical calculations and 
Chatwin’s asymptotic results. 

5. Results for a model of turbulent channel flow, 6 = 0 

The eigenvalue problem (2.3) is solved numerically in this section for the case when 
the basic flow is an idealized model of turbulent channel flow in the channel 0 < y < a. 
In  this case, the variables K and V are given by (Fischer et ul. 1979, 55.1.1.1) 

U* 
K ( Y ) = 6 Y ( l - Y ) ,  V ( Y ) = l + - ( l + l n Y )  ( 0 <  Y < 1 ) ,  

U K  

in which u* is the friction velocity, U is the discharge speed, K is von Karman’s 
constant (approximately 0.4), and the parameter Q becomes 52 = 6wa/~u* (since 
D = &au*). As Chatwin (1970) points out, there are severe faults with the represen- 
tations (5.1) : there is no firm justification for the use of Reynolds’ analogy which gives 
K (  Y )  (but see Fischer et al. 1979, 55.1.1.1). the form for V(  Y )  neglects the important 
viscous sublayer (see Chatwin 1973b), turbulent flow in a channel is not two- 
dimensional, and the turbulent-diffusion process is not isotropic. (Of course, if 
longitudinal turbulent diffusion is neglected, so that e = 0, the fact that (5.1) does 
not correctly describe longitudinal diffusion is irrelevant.) The theory also predicts 
results that differ by orders of magnitude from results in natural streams and 
watercourses (see Fischer et al. 1979, 55.2.1). Nonetheless, the model has been widely 
studied by engineers and is certainly important for pedagogic reasons. 

If longitudinal turbulent diffusion is neglected, so that e = 0,  the eigenvalue 
problem (2.3) now becomes 

@ ( O <  I.’< l),  ( 5 . 2 ~ )  
d Y  

which is equivalent to 

6Y(1- Y)- d@ = 0 
d Y  

a t  Y = O . l  (5.26) 

( 5 . 2 ~ )  d@ @, - finite a t  Y = 0 , l .  
dY 
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Frequency parameter B = waz/K B < 1  

Eigenvalues 

Eigenfunctions 
$J Y, 8) z Ai [( 1 - Y) ($2 )& 

Not presented 
-(t~r(4P+1))9 (P 3 0) 

Transport speed U/Re (A,) U (i.e. discharge speed) 2U (i.e. maximum speed) 

Decay distance - U / w  Im (A,) y( U U Z / K )  0 - 2  4(UUZ/K) ( & 7 T ) - w :  

TABLE 3. Summary of Chatwin’s results concerning dispersion in plane Couette flow in a channel 
of width 2a, discharge speed U ,  molecular diffusivity K, frequency parameter 8 = wa2/K, longitudinal 
diffusion neglected 

I n  this case, the numerical schemes described in $2 require minor changes to allow 
for the boundary condition ( 5 . 2 ~ ) .  The altered computer program was checked by 
comparing the numerical results with u*/UK = 0 with an analytic solution which is 
now presented for that case. With u*/ UK = 0 and with the substitution E = 2 Y - 1, 
the eigenvalue problem (5.2a, c) becomes 

@,-finite dllr . at E=k1. 
d5 

(5.3a) 

(5.3b) 

The solutions of this problem are the Legendre polynomials Pn(c), and the eigenvalues 
are given by -liQ(l - A )  = n(n+ 1) so that 

A = 1 -6in(n+ l)/Q. (5.4) 

The actual value of u*/ UK for laboratory experiments in rectangular open channels 
with smooth sides typically lies in the range 0.15-0.35 (Fischer et al. 1979, table 5.1). 
The eigenvalue problem (5.2) was therefore solved numerically with the values 0.2 
and then 0.3 for u*/UK. The results, which are displayed in figures 6 (a,  b )  and 7 (a ,  b ) ,  
do not show the anomalous eigenvalue behaviour observed in the previous two 
examples. Table 4 contains a summary of the asymptotic behaviour of the eigenvalues 
at low and high frequencies. This table is compiled from the numerical results and 
from Chatwin’s ( 1 9 7 3 ~ )  predictions. 

A comparison of figures 6(a),  7 ( a )  shows that, as u*/UK is increased from 0.2 to 
0.3, there are modest increases in Re (A,) a t  low frequencies (except for the A, branch, 
which is unchanged) and decreases in Re (A,) a t  high frequencies. (The concentration 
pattern is transported downstream a t  speed U/Re ( A p ) . )  Figures 6 (b) ,  7 ( b )  show that 
the main features of Im ( A p ) ,  p 2 0, (and hence the decay distances) as functions of 
Q are essentially unaltered by the change in u*/UK. It is noted, however, that the 
curves for Re (A,) and Im (A,) have more ‘wiggles’ (i.e. vary more rapidly with a)  
when u*/UK is 0.2 rather than 0.3. 



256 N .  G. Barton 

I I 1 I I 

- 1  0 1 2 3 
log10 51 
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0 
- 1  0 1 2 3 

log10 

FICXJRE 5. The first seven eigenvalues as a function of log,,B for the example of $4: ( a )  real 
part of eigenvalues, (b )  imaginary part of eigenvalues. 



Dispersion of solute f rom time-dependent releases 

-1m 

257 

FIGURE 6. The first seven eigenvalues as a function of log,,l2 for the example of $5 (turbulence 
parameter u*/UK = 0.2): (a) real part of eigenvalues, ( b )  imaginary part of eigenvalues. 
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0 
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FIQURE 7. The first seven eigenvalues as a function of log,,Q for the example of $5 (turbulence 
parameter u*/UK = 0.3) : ( a )  real part of eigenvalues, ( b )  imaginary part of eigenvalues. 
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6. Theoretical implications of weak longitudinal diffusion, 0 < e < 1 

I n  this section, weak longitudinal diffusion is retained in the eigenvalue problem 
(2.3), and approximations to the eigenvalues and eigenfunctions are calculated using 
a regular perturbation expansion in e. The analysis is taken far enough to determine 
O(e2)  corrections to the eigenvalues. The perturbation calculation in E has application 
to problems in which e is small, and these problems are common in the dispersion 
of matter in laminar flows in liquids (Chatwin 1973a, p. 659).  

Consider therefore the eigenvalue problem (2.3) with 0 < e < 1 ,  where it is assumed 
that the corresponding problem with E = 0 possesses a discrete set of complex 
eigenvalues {Apo}  and a corresponding complete set of eigenfunctions Suppose 
that the eigenvalues and eigenfunctions for e > 0 have the expansions 

A,(Q,  E )  = ApO(a) + eA,,(SZ) + e'2Ap2(Q) + . . .. ( 6 . l a )  

( 6 . l b )  $hP( Y ,  z, a, e )  = 

where it is found from (2.3) that  

T', z, a)  + qhPl( T', 2, a)  + ."p2( z', z, a)  + . . ., 
$pl and ykpZ are solutions of 

V*(KV$po)  = iQ(1 -Ape V )  $PO* 

V.(KV@pl) = isZ[(1 -Apo 1') $pl + ( - A p l  V-iAioK) 

v * ( I X @ ~ ~ )  = iQ[ ( I  -A,, V )  @ p 2  + ( - Apl 1'- i A i o  K )  

(6.2a) 

(6 .2b )  

+ ( - A p z  1'- 2iApo Apl  K )  (6 2c)  

under the boundary condition ( 3 . 3 b ) .  The solutions to  ( 6 . 2 ~ ~ )  are known by hy- 
pothesis, and standard (solvability) manipulations can be employed to determine 
A,, and A p 2 .  Specifically, if the difference { V * ( k p 0  hT@pl) -V*($pl hTkpO)f is 
integrated over the cross-section of the flow, (6.2a, b )  and the boundary condition 
(2.3 6 )  give 

iAto JJK@iodS 
hpl = - (6.3) 

J J " w i 0 d ~  ' 

The eigenfunction correction can be sought as a linear combination of the {kpo} ; 

that  is. 

where standard manipulations show that the a p q  are given by 

arbitrary ( p  = a) .  
These results (6.4), (6.5) for @pl enable the second correction Ap2 t.0 the eigenvalue 
A,(Q, e )  to be calculated: that  is, the solvability condition applied to ( 6 . 2 ~ )  gives 

A,, J- ~ ~ ~ p l ~ p o ~ ~ + ~ ~ ~ o ~ J - ~ ~ p l ~ p o ~ ~ + ~ ~ ~ p o ~ i , l  jSK$i0dS 
Ap2 = - , (6.6) 

jSV@iodfl 

in which A p l  and $pl are given by (6.3) and (6.4), (6.5) respectively. 
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The O ( E )  correction described by (6.3) has an immediate consequence - longitudinal 
diffusion will produce relatively large changes in strongly damped eigenvalues. This 
follows since strongly damped eigenvalues have lApol large, and hence A p l ,  which is 
proportional to A i o ,  will be large also. This conclusion will be verified by numerical 
work presented in $ 7 .  

7. Axial-diffusion effects in Poiseuille flow, e + 0 

eigenvalue problem governing the dispersion of the contaminant is therefore 
The topic of $3 is now reconsidered with axial-diffusion effects included; the 

1 d d$ 
-- R - = iQ{ 1 - 2 4  1 - R2) - i d 2 }  $, 
R d R (  dR) 

( 7 . 1 ~ )  

- _  "$-o a t  R = O , I .  (7 .1  b )  
aR 

I n  this problem, E is defined by E = Q(K/Ua)z = ( w a 2 / K )  (K/Ua)2 and is a measure of 
the importance of axial diffusion compared to  axial convection effects. The problem 
(7.1) was solved numerically using the techniques described in $2, and the results were 
checked for very small E using the O ( E )  correction obtained in $6. This confirmed the 
tangents in the (A ,  €)-plane to the solutions for A(Q, E )  a t  E = 0. 

The eigenvalues of problem (7.1) are displayed in figures 8(a ,  b )  as functions of 
log,, (Q) for E = 0, 0.1,0.2,0.5,1 .O, and a brief tabulation of some of the computations 
is given in table 5 .  The figures show that the anomalous eigenvalue branches persist 
up to E = 1.0, although the anomalous branch becomes less damped a t  high 
frequencies as E is increased. Axial diffusion has a marked effect on the transport speed 
a t  low frequencies for all eigenvalues and, in agreement with the observations of $6, 
this effect is most noticeable for the eigenmodes with p 2 1 which are strongly 
damped. An increase in axial diffusion means that the concentration pattern 
corresponding to  all eigenmodes is transported slower. Axial diffusion increases the 
damping in the first eigenmode (1, = 0 ) ,  particularly a t  low frequencies, but reduces 
the damping of all the other eigenmodes at all but very high frequencies. 

8. Discussion 
The eigenvalue problem that has been investigated in this paper underlies all 

experiments on the dispersion of solutes by fluids in parallel flow. That is, i t  is 
experimentally impossible to inject a solute into a fluid in other than a time-dependent 
fashion and so, in every application, the eigenvalue problem is present whether i t  is 
acknowledged or not by investigators. Thus it is surprising that the problem has 
received as little attention as it has in the past. 

The eigenvalue problem is unusual for various reasons which have been presented 
throughout the paper and are now summarized. The problem is not self-adjoint 
because complex coefficients are involved and because the eigenvalue enters i t  
nonlinearly. (This last fact could be obviated by Fourier-transforming the problem 
in x and not t ,  but this would be appropriate for dispersion from an initial distribution 
which is known for all x, and this is not the usual experimental condition.) The 
eigenvalue problem has singular perturbation aspects in that, for Q large, most of 
the eigenfunctions are confined within a region aQ-flof the position in the cross-section 
where the fluid speed is largest. Here the index /3 varies from problem to problem - it 
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FIQURE 8. For caption see facing page. 
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FIGURE 8. The first seven eigenvalues as a function of log,, a and E for the example of $7  : ( a )  real 
part of eigenvalues, ( h )  imaginary part of eigenvalues: ( 1 )  E = 0; (2) 0.1; (3) 0.2; (4) 0.5; ( 5 )  1.0. 

was a and $ for the problems of $53 and 4 respectively. Moreover, the eigenvalue 
problem has regular perturbation aspects in that, in many cases, the effect of 
longitudinal diffusion is given by a regular expansion in the small parameter E .  

When longitudinal diffusion is completely neglected so that E in (2.3) is set equal 
to zero, one eigenvalue branch in two out of the three problems studied showed 
anomalous and unexpected behaviour. It is conjectured that some higher eigenvalue 
branches in all of the problems might also have the anomalous behaviour. The most 
immediate conclusion that can be drawn from the numerical results is that  the 
eigenvalue structure is significantly richer than is suggested by the asymptotic results 
for small and large SZ presented by Chatwin. The peculiar near-coalescence of the 
eigenvalue branches in the Poiseuille and Couette flow cases brings bifurcation theory 
to mind, and it is possible that the effects may be associated with a singularity lying 
close to  the real axis in the complex SZ-plane. The anomalous eigenvalue branches 



264 N .  G. Barton 

Q = 1  

a =  10 

a = 100 

a = 1000 

a=1 

a =  10 

a = 100 

a = 1000 

Lowest eigenmode A, 
Re (4 

E = O  

0.1 
0.2 
0.5 
1 .o 

0.1 
0.2 
0.5 
1 .o 

0.1 
0.2 
0.5 
1 .o 

0.1 
0.2 
0.5 
1 .o 

s = O  

s = o  

s = O  

s = O  
0.1 
0.2 
0.5 
1 .o 

0.1 
0.2 
0.5 
1 .o 

0.1 
0.2 
0.5 
1 .o 

0.1 
0.2 
0.5 
1 .o 

s = O  

s = O  

E = O  

0.999 48 
0.97368 
0.92577 
0.777 21 
0.61991 

0.93525 
0.87353 
0.82034 
0.70009 
0.57687 

0.569 96 
0.56301 
0.55458 
0.524 23 
0.47234 

0.52235 
0.52008 
0.51645 
0.49935 
0.461 79 

Re (4 
1.0004 
0.38501 
0.281 71 
0.181 89 
0.12950 

1.054 2 
0.82525 
0.69502 
0.503 73 
0.374 48 

0.690 01 
0.66063 
0.632 37 
0.55987 
0.476 15 

0.56678 
0.56024 
0.55221 
0.52293 
0.472 10 

-1m ( A )  

0.020840 
0.11313 
0.18211 
0.27530 
0.30033 

0.2 13 02 
0.25995 
0.27258 
0.30032 
0.301 57 

0.080 386 
0.096590 
0.11137 
0.14624 
0.17836 

0.023372 
0.037087 
0.050277 
0.084 855 
0.12352 

A, 
- Im (A) 
12.834 
7.4834 
6.0185 
4.301 7 
3.2457 

1.227 7 
1.1713 
1.1019 
0.94528 
0.794 17 

0.31368 
0.331 50 
0.34377 
0.35955 
0.35660 

0.076384 
0.092 347 
0.10697 
0.141 78 
0.17434 

TABLE 5. Computed values for A,,(~,E) and A1(SZ,e) a t  0 = 1, 10, 100, 1000 and E = 0, 0.1, 0.2, 
0.5, 1.0 €or the example of $7. The transport speed of the eigenmode is CJ/Re(A) and its decay 
distance in the downstream direction is -aP/SZ Im ( A ) .  
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are relatively strongly damped compared to other branches and therefore are not 
particularly important physically ; i t  would presumably be difficult to detect their 
effects experimentally. It should be stressed that this peculiar behaviour is an artifact 
of the problem and not ofthe computational methods. Another important unanswered 
question is why the almost-coalescing behaviour does not occur in the model for 
turbulent channel flow! It is possible that anomalous behaviour occurs for those 
singular eigenvalue problems in which the velocity profile vanishes a t  the walls. This 
possibility would appear to be more plausible since the author (Barton 1983) has 
recently shown that anomalous eigenvalue behaviour also occurs when the basic flow 
is plane Poiseuille flow which vanishes a t  the boundaries. 

The Fourier-decomposition method has further complications when longitudinal 
diffusion is included. Then, orthogonality of the eigenfunctions is lost, so that fitting 
constants as in (2 .7)  becomes more difficult. Also, the occurrence of longitudinal 
diffusion means that simple estimates of the transport speed and damping rates of 
the concentration pattern through (2.8a, b )  are no longer possible. Another important 
result is that small amounts of longitudinal diffusion cause relatively large changes 
in the eigenvalues, and hence in the transport speed and decay distance of the 
concentration pattern. The effect is most pronounced for strongly damped eigenmodes. 
This theoretical prediction which was made in $6 was confirmed in $ 7  for the case 
of dispersion from a harmonically varying source in Poiseuille flow. The importance 
of axial diffusion can be seen from the eigenvalues A, and A, listed in table 5 for SZ = 1 ,  
10, 100, 1000 and E = 0, 0.1, 0.2, 0.5, 1.0. (For any eigenmode, the transport speed 
is given by U/Re ( A )  and the decay distance in the downstream direction by 

where P = CJa/D is the PBclet number of the flow.) In  many cases, a relatively small 
change in E produces a pronounced change in either Re ( A )  or Im ( A ) .  For example, 
a t  Q = 1 ,  changing e from 0 to 0.1 changes Im (A,) by a factor of 5.4 and Re (A,) by 
a factor of 2.6. 

The conclusion to be drawn from the previous paragraphs is that i t  may not be 
desirable or optimal to solve the time-dependent injection problem by Fourier de- 
composition in time. The Fourier approach does of course give relatively straight- 
forward results for the lowest eigenmode and for asymptotically small or large values 
of Q, but the complexity of the associated non-standard eigenvalue problem makes 
it worthwhile to  consider other methods of solution. For this reason, the approach 
adopted by Plumb et al. (1983) is now described briefly. For a general problem, 
suppose that the input strength a t  x = 0, 

C(0, Y , Z , t )  = f ( t ) g ( z ’ , Z ) ,  (8.1) 

is written as 

dtdqf(r)g(t ,  ?118(t-7) a- v 4 v - m .  (8.3) 
cross-section 

C(0, z’, 2, t )  = / dTSS 
--m 

The solution is then given by convolving the solution for dispersion from a &function 
source at t = r ,  6 = I’, ‘1 = 2 with the functions f ( r )  g ( 6 , ~ ) .  Since the dispersion from 
&function sources is becoming ever-better understood, this approach may be more 
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practical than the Fourier decomposition approach in some applications. Thus for the 
experiments of Plumb et al. (1983) on dispersion of mixtures of gases, neither large- 
nor small-frequency expansions were applicable and there was significant axial 
diffusion. Plumb et al. therefore adopted the convolution approach in preference to 
the Fourier-decomposition approach to analyse their observations. (It would 
presumably be a valuable exercise to refit the data of Plumb et al. using the Fourier 
decomposition approach for comparison with the results obtained using (8.1, 8.2); 
the author may attempt this in the future.) The convolution approach is particularly 
suitable if large-time results are required because the large-time asymptotic solution 
for dispersion from a &function source is very well understood (Chatwin 1970). It is 
noted in conclusion that the convolution approach to dispersion problems with 
time-dependent injection has also been proposed and discussed by Gill & Sankara- 
subramanian (1 972). 

The author would like to thank Dr P. C. Chatwin for his helpful comments on a 
preliminary draft of this paper. 
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